

Pyramid Scaling Guide
Guidelines and best practices for how to scale Pyramid

© Pyramid Analytics 2025

2 Pyramid Scaling Guide © Pyramid Analytics 2025

Contents

Overview ... 3

Steps for Scaling Pyramid .. 3

Pyramid Server Tiers .. 3

Core Servers ... 3

Peripheral Servers .. 4

Optional Services.. 4

Pulse... 4

Basic Scale Models.. 5

Simple Standalone ... 6

Split Out / Scale Up.. 6

Scale Out... 6

Tier Communication .. 6

Multi-node options ... 7

Multi-node Installation Procedures...................................... 7

MVP: Minimum Viable Product ... 7

Removing Nodes ... 7

Scaling Considerations ... 8

Hardware ... 8

General Resources .. 8

Virtualization ... 8

Networking ... 8

Host Operating System .. 8

Client Browser .. 9

Data Stack ... 9

Data Footprint .. 9

Depth vs Breadth .. 9

Activity Volumes ..10

User Concurrency..10

Query Size and Complexity ..11

Content Design..11

Non-Query based Activities ...12

Scaling Strategies...13

Techniques ..13

Prototype Scaling ...13

Incremental Build Out ...13

Guidance ..13

Single and Dual Machine Deployments 14

Small Deployments ..14

Medium Deployments ...14

Large Deployments ..14

Enterprise Deployments ...15

Elastic Scaling ...15

Key Server Designations..15

Real-Time vs Batch ..15

DS/ML and Solve ..15

Natural Language Processing (NLP)16

In-Memory ..16

Scaling Pulse ..16

Performance Bottlenecks ...17

Slow real-time querying ...17

Overwhelmed Data Stack ...17

Slow Content Management and Application17

Other Factors ...17

Appendix...18

Load Testing Design ...18

Database Repository Considerations 19

Deployment suggestions ..19

Tactical Suggestions ..19

In-Memory Size Guidance ...20

Pyramid’s Baseline Load Testing Results21

Single Machine Tests:..21

Dual Machine Tests: ...21

Common: ...21

3 Pyramid Scaling Guide © Pyramid Analytics 2025

Overview
Scaling an analytics platform can be complicated due to the many variables and factors that affect the performance of the
“analytics stack”. These factors include hardware choices; networking; the host operating system; the client browser; the
underlying data stack technologies; and the data footprint itself. Other key variables relate to activity volumes - which is a
combination of concurrent user patterns; typical query sizes / complexity; and content design.

Owing to this complexity, there is no set formula that can be easily applied to every deployment scenario, beyond the
technical steps needed to create a scaled-out instance. Instead, there are a variety of best practices and ideas on how to
create scale and ways to measure what factors in the stack need attention.

The good news is that Pyramid was designed to scale up and out to meet those needs. However, you will need to consider
other aspects of your deployment in arriving at the right solution. This guide is designed to help you come to the right
decisions.

The first step is understanding how Pyramid itself can be installed.

Steps for Scaling Pyramid
The following explains different options for how Pyramid can be deployed. An explanation of the server tiers in Pyramid is
first required to better understand these options.

Pyramid Server Tiers
Pyramid is made up of a set of server-side Java service application tiers that work together to respond to user requests and
analytic tasks. The tiers are broken in 5 core servers; 2 peripheral servers, 5 optional servers and the Pulse server.

Core Servers
• Web Server: This tier hosts the client application and provides the

main entry and exit point for requests and responses to both the
client tools and API calls.

Resource usage is medium low.

• Router Server: This tier provides the message routing decisions

required in a multi-node deployment.
Resource usage is low.

• Runtime Server: This tier processes all real-time requests and tasks

like querying, content management and administrative functionality.
Resource usage is high, and speed is key.

• Task Server: This tier processes all batch and off-line requests and

tasks such as data preparation/ETL jobs, publications, log cleaning
and provisioning.

Resource usage is high, but speed is less key.

• DS/ML Server: This tier (previously known as the “AI” server)

processes all data science and machine learning requests related to
internal libraries, Python and R.

Resource usage is high, and speed is key.

4 Pyramid Scaling Guide © Pyramid Analytics 2025

Peripheral Servers
Peripheral servers cannot be installed separately and are installed automatically as companion services with the core tiers.
• File Server: This service is installed on each machine hosting

Pyramid and facilitates all file and data movements between servers
in a multi-node deployment.

Resource usage is low.

• Agent: This service is installed on each machine hosting Pyramid and

monitors the health of all Pyramid services installed.
Resource usage is very low.

Optional Services
• Natural Language Processing (NLP) Server. This optional tier is

required if support for Natural Language Processing has been
enabled. It requires at least 4GB ram for effective performance.

Resource usage is medium.

• Windows Connector Service: this optional tier is needed when

customers plan to query Microsoft OLAP or Tabular data sources.
This tier is not required if these data sources are not used.

Resource usage is high, and speed is key.

• In-memory Server: this optional service is designed to house and run

Pyramid’s in-memory database server. This tier is not required if the
in-memory engine is not used1.

Resource usage is high, and speed is key.

• Repository Database Server: This server is used to house the

database repository holding all the meta structures. Customers can
choose to use the internal PostgreSQL database engine2 or use a
‘remote’ database (PostgreSQL, MS SQL, Oracle).

Resource usage can be medium to high.

• Solve Server: This optional engine3 is used to house and run the

Optimization and Solver engine tier driven from Tabulate for
prescriptive analysis.

Resource usage is high, and speed is key.

Pulse
• Pyramid Pulse Server: this tier is NOT part of the standard install –

and is by design installed on separate remote hardware to connect
remote databases to the main Pyramid installation. Scaling the Pulse
server is covered separately below.

Resource usage is high, and speed is key.

1 The geospatial mapping tools in the application use a special database housed in the in-memory engine. If it’s not installed,
the mapping engine will not be available.
2 Not recommended for anything other than small groups or light POC’s
3 Licensed separately.

5 Pyramid Scaling Guide © Pyramid Analytics 2025

Basic Scale Models
Since each tier of Pyramid can be installed on one or more machines in almost any combination, the scale out permutations
are almost endless. The following 3 basic models shown in figure 1 below cover the skeletal approaches.

Note that the use of firewalls and separate data stack machines is shown in a highly simplistic flow below. They may not be
appropriate in all situations and the network configurations may be far more complex.

Figure 1 Basic Scale Models

Scaling

C
li
e
n

t
In

te
rn

e
t

/

E
xt

ra
n

e
t

P
y
ra

m
id

 2
0
1

8
 S

e
rv

e
rs

D
a
ta

 s
ta

ck

Scale outSimple Standalone Split out / Scale Up

runtime

web

router

task runtime

web

router

task

6 Pyramid Scaling Guide © Pyramid Analytics 2025

Simple Standalone
The simplest is to install all Pyramid tiers on a single machine. If the host server is big enough4 this approach is the least
complicated and fastest deployment model. This approach includes all the core, peripheral and optional servers installed on
one machine.

If resourced well, Pyramid will comfortably use all the server’s resources and scale up as needed. Critically, the data stacks
that are being used for analyses should be on separate hardware unless they are small, or the hardware housing Pyramid can
accommodate its load as well.

Split Out / Scale Up
This type of model involves splitting out and installing each of Pyramid 5 core tiers and 5 optional tiers on separate machines
– creating a multi-node cluster. This includes variations where 2 or more tiers share hardware in varying combinations. This
approach allows customers to put resource-intensive tiers on their own hardware – and therefore provides a more efficient
use of given resources. It also offers better scale up options for any given tier/server without wasting those same resources on
the low-demand tiers (e.g. if the solution needs more processing for real-time querying, the Runtime server can be allocated
more CPU’s or memory in a virtualized environment) . The 4 tiers most relevant here being the Runtime, Task, Windows
Connector and In-memory servers. Putting the web and router servers on the same machine is a typical approach, with other
tiers on their own hardware. In addition, using a remote database server to house the repository is another option.

The data stacks that are being used for analyses are usually on separate hardware - in much the same way that each Pyramid
tier is separated out.

Scale Out
The scale out model is a variation of the split out, except that it involves adding one or more duplicate tiers on multiple
nodes into the cluster. This approach involves adding multiple servers to unblock bottlenecks on any given tier. So, for
example, if heavy batch processing is required, customers can deploy 2 or more task servers while only using 1 web, runtime
and router server.

While the scale out model does not preclude scaling up hardware for any tier, it does facilitate failover and high availabili ty
and the use of different physical servers for scaling. There is also evidence that scaling out produces slightly better resul ts
than the same resources used for scaling up.

Again, a remote database server is typically used to house the repository and the data stacks that are being used for analyses
are on separate hardware.

Tier Communication
In the split out and scale out models, the Router server handles all communication flows and ensures that all data packets
move around the different tiers efficiently and effectively.

4 “Big” implies something strong enough to house the entire Pyramid application and provide enough processing resources for
querying, batch processing and the running of all other peripheral services and the host operating system. As described in this
document each deployment is unique. So, there is no one definition of what that is.

7 Pyramid Scaling Guide © Pyramid Analytics 2025

Multi-node options
Every tier in the Pyramid stack can be installed multiple times in the cluster. The following considerations should be noted in
a multi-node environment:

• For core tiers:
o The Router server acts in an active-passive, failover model. This means, one router is the master, and the

secondary routers are passive until the primary fails.
o The web servers can act in an active-active, load balance model. However, the customer needs to use their

own load balancing technologies as part of their web farm strategy.
o The runtime and task servers act in an active-active, load balance model. This means jobs are shared

between all tiers all the time. The Router server handles the load balancing.
• For Optional Tiers

o The NLP and Solve engines act in an active-active, load balanced model. This means jobs are shared
between all tiers all the time. The Router server handles the load balancing.

o The Windows connector acts in an active-active, load balanced model. The Router server handles the load
balancing.

o The in-memory database engine is only available as a single node installation. This means you can have
multiple in-memory servers hosting multiple databases and models. However, they cannot be load balanced.
It is strongly recommended that the In-memory database engine is provisioned with its own server.

o The database repository clustering options are based on the underlying technologies. PostgreSQL, Microsoft
SQL and Oracle all offer multi-node clustering options. However, the setup and maintenance of these high-
availability systems is the responsibility of the customer.

Multi-node Installation Procedures
Basic instructions for installation can be found in Pyramid online help.

To create a multi-node installation of Pyramid, use one of the advanced installers (Windows or Linux) and choose the “multi -
server” option. From the tier list, select which components you wish to install.

The initial installation, regardless of tier type, must include the creation and initialization of the database repository (choose
“new”). All subsequent node installations must then point to that repository (choose “current”). By using the common
repository, we are simply adding the new node to the existing installation cluster. Once added, the cluster will self-recognize
the components and nodes and use them accordingly.

MVP: Minimum Viable Product
When the minimum requisite tiers are available in the cluster, “MVP” status is achieved, and the product can be initialized and
become partially functional. MVP is achieved when at least 1 web, 1 runtime and 1 router tier is added to the cluster (on one
or more nodes). It is highly recommended to add a task server as well, and to add the router last in the installation sequence.

Once the application is initialized users can start working with the product. Post MVP, new nodes can easily be added to the
cluster by installing them as needed and using the common repository instance.

Removing Nodes
Uninstalling the software from a server will remove the node from the cluster. However, care should be taken that the MVP
tiers remain intact. If they are missing, the cluster will fail.

8 Pyramid Scaling Guide © Pyramid Analytics 2025

Scaling Considerations
Before you can pick a scaling strategy, you need to consider all the variables that can affect the approach. As mentioned, this
includes hardware choices and networking; the host operating system; the client browser; the underlying data stack
technologies; and the data footprint itself. The other key variables relate to activity volumes which is a combination of
concurrent user patterns; typical query sizes / complexity; and content design requirements.

Hardware

General Resources
Data analytics is a resource intensive domain, and requires numerous calculations and CPU cycles; plus it also needs disk
space to handle the vast volumes of data. Often, resources allocated to the environment are extremely understated.

• Memory is used heavily by Pyramid to improve performance and processing. This impacts the runtime, task, windows
connector and in-memory tiers. Providing adequate memory allows bigger jobs to run without disk paging. Memory is
less relevant for the router and web tiers.

• CPU is used heavily by Pyramid for processing. Like memory, this impacts the runtime, task, windows connector and
in-memory tiers. Providing adequate CPUs allows more jobs to run concurrently without queueing. CPUs are less
relevant for the router and web tiers. A key aspect to note is that a given task must run on a single CPU thread (or
core) at any time. So, for example, only 16 activities can run on 16 cores at a given time. If there are more jobs, the
CPUs merely “thrash” and “switch” activities and it seldom produces good performance.

• Disk is not crucial for most activities in Pyramid. However, it is used as the storage medium for the database
repository and can heavily affect its performance. Disk is also used for data preparation/ETL jobs when processing
large files. The read/write performance can be affected by slow disks for these types of operation.

Review the online help for System Requirements and minimum recommended CPUs and RAM

Virtualization
Generally, virtual machines and bare metal machines will operate with performance profiles expected from those
technologies in typical conditions. However, over allocation of CPUs and memory in virtualized deployments will severely
impact performance (as described above).

Networking
As Pyramid is usually connecting to networked resources (both intranet and extranet), networking can have an impact on
performance. Server-side tiers should be installed on the same network segment (in the same domain), with fast NICs and
switches. The data stacks that will be analyzed by Pyramid should follow suit. Where possible, Pyramid should be installed on
the same network segment as the data stack to improve performance.

Client connectivity is also affected by networking speed. As part of the Pyramid design much emphasis was placed on
reducing the networking requirements in Pyramid’s client-server communication design. Nevertheless, network latency is
something that will affect the perceived speed of the application.

Host Operating System
Both the Windows and Linux builds of Pyramid can scale up resource usage as needed. In some operations, the Linux version
is shown to be slightly faster at processing the Java code base. However, the In-memory engine performs slightly better on
Windows.

Care should be taken that in both host systems, all non-essential competing processes are minimized to allow Pyramid to
fully utilize all resources. Good examples include performance logging, anti -virus applications and other competing
applications.

9 Pyramid Scaling Guide © Pyramid Analytics 2025

Client Browser
The choice of client browser has a relatively large impact on performance owing to the difference in browser technologies
and engines when processing the HTML5 content. Generally, Chrome and Firefox provide the fastest experience for users ,
followed by Opera. Other client browsers such as Edge and Safari support HTML5, however performance is slower - although
their performance evolves from version to version.

In the event a customer cannot deploy a fully compatible HTML5 browser, the Pyramid Browser client provides a convenient
alternative and involves a small installation process.

Data Stack
The database engine that will be analyzed by Pyramid has a significant impact on the performance and scalability of the
platform. While it may be convenient to connect directly to various stacks, they may not be properly designed for the speed of
data analytics or properly configured for such operations. As such, care should be taken on how data stacks are prepared for
analysis and expectations matched accordingly. Explaining how to approach this item is beyond the scope of this document,
however, some general ideas are provided below:

• Relational databases are generally weak for high-speed, high-concurrency analytic queries. If used, they need to be
properly optimized with file partitioning, column indexing and table structure. Relational engines are also very
sensitive to hardware choices – especially disk speed.

• In-memory databases perform extremely well for high-speed analytic queries. However, they are very sensitive to
CPU resources and are limited by available memory. If memory is sufficient, concurrency is heavily affected by the
number of available core CPUs to process requests. It is strongly recommended that the In-memory database engine
is provisioned with its own dedicated server.

• OLAP databases have a similar profile to in-memory systems, however, they often store results on disk as well. This
means they are less reliant on memory but are more affected by disk speed and CPUs.

• MPP databases are high-end solutions designed for high-speed, high-concurrency queries. However, the proper
optimization steps for each technology should still be followed.

Data Footprint
Obviously, the larger the data footprint, the bigger the impact on performance. This is further impacted by the type of data
stack technology (described above). Pyramid makes querying databases easy for end-users, which allows them to consume
enormous amounts of detailed data through the engine. When the data footprint is extremely large, the possibilities for
performance issues can increase. Often, the best approach is to put an end-user education program in place to ensure
analytical best practices are adopted and the systems are not misused.

The design of the data footprint has a big impact on performance. Often, this is unavoidable because it reflects business
requirements. The variations and techniques for solving performance problems across all data source types are beyond the
scope of this document. However, the following tips are applicable to many relational database engines.

Depth vs Breadth
Usually, the breadth of a database (number of tables, joins and number/type of columns) can have a bigger impact on
performance than the depth (number of rows).

For relational technologies, ‘depth’ issues are usually solved with file structures, table partitioning and disk speed. ‘Breadth’
issues, on the other hand, require more attention and usually involve structural changes to the database.

Here are some general tips for handling breadth issues on structured relational data sources:

• Reduce the number of table joins needed to query the system. Effectively, this means trying to keep transactions to a
single fact table, with a simple, single inner join to all peripheral dimensional tables.

10 Pyramid Scaling Guide © Pyramid Analytics 2025

• Where possible ensure dimensional tables are denormalized down to single tables rather than chains of tables. The
use of star schemas or snowflake schemas (The snowflake schema is a variation of the star schema, featuring
normalization of dimension tables) are a better approach.

• Instead of using columns from the fact table for dimensional attributes, create dimensional tables or indexed views
BEFORE adding them to the model schema. The cost of finding unique values and keys from deep fact tables for each
query can be a very expensive and will heavily affect performance.

• Index all primary and foreign key columns. Also, relational databases often perform better with numeric keys.
• Inner joins are generally the cheapest joins to create and process. So, try and ensure keys are a perfect match

between tables.
• Reduce or remove all “blob” columns from tables that will be used for analytics. Due to their size, they can impede

read speed. Instead, put them in adjunct tables that can be drawn in if needed.

Activity Volumes
The amount and size of activities planned for the system have a profound impact on the scaling strategy. Activities are
classified as all events triggered in the system in each period. This means user concurrency as well as the types of queries the
users will run are the key aspects to measuring the size and volume of activity.

User Concurrency
The number of expected concurrent users on the system has a tremendous impact on performance. Each user’s interactions
with the system produces events and transactions that mostly need to be processed on the servers, since the client
application is delivered through a thin, JavaScript web application in the user’s browser.

Like all client-server designs, Pyramid was architected to comfortably handle concurrent requests from multiple users at the
same time in a fast, efficient manner. But there are limits to everything. The scaling options are designed to give customers
the best opportunity to increase those limits as needed.

Measuring Concurrency
The hardest issue to resolve with concurrency relates to determining the expected usage of the product expected over time.
Usually, this is evaluated for a given period: daily, weekly or monthly. The simplest approach is to decide that every user in
the system could theoretically access it at the same time. However, this is usually a gross overestimation of the figures, and
can lead to expensive hardware resourcing.

Many enterprise applications are rated on a 10% concurrency rate for a given user population. Pyramid has no simple answer
to this question and cannot therefore make a specific recommendation on scale out formulations. Instead, our approach is to
start with a reasonable and modest set of concurrency assumptions; measure usage over time; and continue resourcing the
cluster as needed from there.

There are numerous tools for measuring actual concurrency. However, the transaction and audit logs in Pyramid itself provide
the most accurate way of measuring both the number of concurrent users as well as the number of concurrent querying
events in the system.

Peak vs Average

Once usage is better understood, the next key step is to decide if the system’s performance should be scaled out for peak
periods or to tolerate some slowness and instead cater for average usage periods (with lower resourcing). The platform’s
design is centered on the idea that it is easy to keep adding or modifying software and hardware resources in the system, so
one approach does not preclude the other.

11 Pyramid Scaling Guide © Pyramid Analytics 2025

Query Size and Complexity
While the number of concurrent users is a key factor in determining the scale strategies, an equally important consideration is
the types of queries users will run. While user usage patterns can be become more and more predictable over time, query
patterns can remain elusive. As such, a strong transaction monitoring regime using Pyramid’s logs is key to refining query
patterns.

Query Size
Regardless of the pattern, queries affect performance as follows:

• Normal queries (up to 500 rows by 4-8 columns) are highly scalable, because the data stack, Pyramid servers and
Pyramid client can process and display results quickly and efficiently. Most analysts would admit that queries
exceeding this size are generally not analytical. Rather they are data fishing exercises or data extraction processes.

• Bigger queries (up to 5000 rows by 4-8 columns) are still scalable, although they are generally useless analytically
unless they are viewed in ‘data reduction’ visualizations (scatter, tree map etc.).

• Large queries (10,000+ rows by 8+ columns) require more processing time by both the data stack and Pyramid – and
will consume more network bandwidth. Client browsers will also be impacted in some situations when rendering
results. These queries are either built by mistake or are used for data extraction.

• Mega queries (100,000+ rows by 8+ columns) should be used rarely and will impact all tiers in the stack

Therefore, if queries are normal to big, scale out strategies will be less concerned with query size. If querying is on the larger
side, than the scaling strategy must take this into account (especially the data stack).

Query Complexity

The complexity of a query is driven by the several elements and can vary greatly between data technologies. The following
broadly applies to all data stacks:

• Number of joins needed in the SQL statement. The more joins, the slower the query response, and the greater the
data stack will need to work to respond. Joining has a greater impact on some of the newer data engines like
RedShift, BigQuery, Presto and Drill. Keeping the data model schema simpler can reduce this issue.

• Calculations impact performance. The heavy use of custom calculations (members or measures) will affect
performance in both MDX and SQL.

• MDX queries are affected by detail or grain, and the level of aggregation that may be available in the cube. Tabular
results are not generally affected by grain. However, they are much more sensitive to calculations and dimension
nesting. If granular querying is required, consider using an alternative engine to SSAS OLAP cubes.

Content Design
Performance is basically a function of the number of users (a) multiplied by the number of queries (b) multiplied by query size
and complexity of a queries (c).

 Content design (b) dictates the number of queries to be executed in each analysis. While most of the content design decision
is driven by business requirements that are generally inflexible, it is worth understanding their impact.

Dashboards and Publications
When users build dashboards, they typically include 2 or more queries on the visible canvas, and these are usually
accompanied by filters (or slicers). When launched, the engine needs to draw all these elements concurrently and it therefore
affects performance. Reducing the number of visible elements on a canvas lightens the load.

Filter and Slicers
Most users do not realize that filters (slicers) are also generated by queries to the same data source and require processing
and rendering. Further, slicer lists can become exceedingly large (in the thousands of elements). Reducing slicers or limiting
their element size will also lighten the load.

12 Pyramid Scaling Guide © Pyramid Analytics 2025

Cascading

When slicers are cascaded (x affects y, y affects z; etc.), they need to be executed in order and then injected into the final
query. This prevents asynchronous processing and can slow execution times. Ironically on the other hand, cascades lighten
the load because they operate as a filtering mechanism for downstream elements, reducing the amount of excess data to
retrieve and draw in the client.

Non-Query based Activities
One of the greatest impacts on performance may come from peripheral activities executed on the platform outside of
interactive queries and analytics. This includes, but is no limited to, data modeling, publication batch processing,
provisioning, and system maintenance.

Data Modeling
The process of designing and processing data models can heavily impact the resources of the system. The runtime engine
server is used heavily during the model design process (for example with ‘previews’), while the task engine is used to proces s
the model (scheduled or otherwise). The number of active data modeling jobs and concurrent users designing models should
be accounted for in sizing the number of both runtime and task engine servers.

Publications

Publication execution is always run from the task engine, even in preview mode. So, it affects the performance and resources
of the runtime engine less. Nevertheless, it does impact the system.

Provisioning and System Maintenance
These background administrative tasks are all launched from the task engine servers. So they only lightly affect the
performance and resources of the runtime engine.

See comments on real-time and batch processing for more.

13 Pyramid Scaling Guide © Pyramid Analytics 2025

Scaling Strategies
Using our basic model options described above and an understanding of the key variables affecting performance, we can now
consider several scaling strategies.

Techniques
Pyramid recommends 2 techniques for scaling out the solution: proactive ‘prototyping’, or reactive ‘increments’. These
techniques can be used together – they are not mutually exclusive.

Prototype Scaling
In this approach, the environment administrators would take some baseline hardware footprint, which represents a rough
estimate of the footprint needed to support users. Based on the statistics, administrators can then formulate the scale to meet
real-world needs by scaling out the baseline.

Using load testing tools like Microsoft Visual Studio or JMeter, administrators would simulate several “sessions” that users
may follow in their use of the product. Using these tools, administrators can determine if they have enough hardware and the
right combination of stack elements to meet the user volumes and activities expected on the system with the baseline
hardware chosen.

While this approach is proactive, and allows administrators to put the right solution in place before deployment, it does
require realistic tests to be created with realistic user concurrency rates.

Incremental Build Out
In this approach, the environment administrators would put in place a reasonable amount of hardware which represents a
rough estimate of the footprint needed to support the real-world users.

Using transaction logs and other performance monitoring tools, administrators can then modulate the solution based on
review of performance. At the start, the review would be quite frequent. As the solution matures, the reviews can be sparser.
The key here is to readily add new nodes to the cluster to meet performance demands without long delays.

While this approach is only reactive, it allows administrators to put the right solution in place based on real world outcomes,
rather than guesses made using a simulator.

Guidance
Below are some ideas on deployments based on size. These are ONLY CONSERVATIVE GUIDES. To get accurate scaling
strategies customers need to use the insights from this document and the techniques described above to tune the solution to
their own needs. Pyramid’s baseline scaling results are presented for illustrative purposes in the Appendix.

Note that concurrency in the guides below is assumed to be at 25%, rather than 10%. This figure , as described above, needs
to be measured in each deployment context.

Bare Minimum Server Specification

The “bare” minimum requirement – and we emphasize “BARE” - for a given Pyramid designated machine is at least 8 cores
and 8 to 16Gb of Ram. Disk space varies, but at least 2Gb of space is required to install the entire Pyramid application on a
single server with all the 3rd party drivers and connectors (included in the build). Note that there are no such limits on
machines hosting data stack technologies or the database repository.

Regardless of these requirements, each machine described below should be sized according to the techniques described
above.

14 Pyramid Scaling Guide © Pyramid Analytics 2025

Single and Dual Machine Deployments
Except in the smallest and quickest of scenarios, a single machine installation is generally inadequate. Pyramid was designed to scale

and has an architectural footprint for high volume and not minimalist deployments. However, it may be a reasonable place to start

before adding more nodes to your cluster. Single machine deployments are good for POC’s and small workgroups. Even so, single

machines that need to respond to queries and process large batch jobs in the background can be insufficient in real-world

production.

Dual server deployments are obviously better than single machine installations. If there are only 2 servers available, a good
split of tiers for real-time querying performance is:

• One machine for the Web server, Router server, Task server and repository database
• One machine for the Runtime server

For a batch oriented solution swap the task and runtime engines. The data stack, to be analyzed, should be separate,
including the In-memory database.

The following scenarios are provided as guidelines and the performance will be dependent on a number of environment
variables. The deployment scenarios focus on scaling up a number of machines, but equally increasing machine capacity
rather the number of machines is an alternative approach.

Small Deployments
If you are planning to deploy 100 users or less, with 25% concurrency, reasonable queries and a reasonable data footprint,
Pyramid recommends starting with a multi-node cluster of 2-4 machines:

• One machine for the Web and Router servers
• One machine for the Runtime server
• One machine for the Task server
• One machine for the repository database
• The data stack, to be analyzed, should be separate, including the In-memory database.

Medium Deployments
If you are planning to deploy 200 users or less, with 25% concurrency, reasonable queries and a reasonable data footprint,
Pyramid recommends starting with a multi-node cluster of 5-6 machines:

• One machine for the Web server
• Optionally one machine for the Router server (or combine with the web server)
• Two machines for the Runtime server
• One machine for the Task server
• One machine for the repository database
• The data stack, to be analyzed, should be separate, including the In-memory database.

Large Deployments
If you are planning to deploy 500 users or less, with 25% concurrency, reasonable queries and a reasonable data footprint,
Pyramid recommends starting with a multi-node cluster of 8-9 machines:

• Two machines for the Web server (the customer will need to use their own web-farm load balancers)
• One machine for the Router server
• Three machines for the Runtime server
• Two machines for the Task server (this is key if there are many publications and ETL processes)
• One machine for the repository database

15 Pyramid Scaling Guide © Pyramid Analytics 2025

• The data stack, to be analyzed, should be separate, including the In-memory database. Depending on data stack
technology, these machines should be scaled out too.

Enterprise Deployments
If you are planning to deploy thousands of users, with 25% concurrency, reasonable queries and a reasonable data footprint,
Pyramid recommends starting with a multi-node cluster where each tier is at least 2 machines per tier:

• Two or more machines for the Web server (the customer will need to use their own web-farm load balancers)
• Two machines for the Router server (one active, the other passive)
• Two or more machines for the Runtime server
• Two or more machines for the Task server (this is key if there are many publications and ETL processes)
• One machine for the repository database
• The data stack, to be analyzed, should be separate, including the In-memory database. These machines should be

scaled out too.

Elastic Scaling
Pyramid may also be deployed via Kubernetes, offering dynamic scaling up and down, depending on the load applied to the
Pyramid installation. For further information on Pyramid Kubernetes deployment, please consult the Kubernetes Deployment
user guide.

The considerations discussed in this document regarding the different Pyramid Services and their resource requirements, also
applies to a Kubernetes Deployment.

Key Server Designations

Real-Time vs Batch
The Runtime, Task and DS/ML servers carry most of the server-side processing load. Getting the right balance between them
can often be useful for resource allocation and server deployment decisions.

The most obvious guidance is to separate the two tiers in to at least two machines: runtime for real-time activities, task and
DS/ML for batch processing of data. As mentioned, real-time queries are the core of data analytics, so the Runtime engine is
usually given the highest and strongest resources. Because time performance is less of an issue for running batch jobs, the
Task and DS/ML engines can be allocated less or weaker resources.

If there is high demand for batch processing of data and publications, another good strategy is to deploy at least 2 task
servers. One should be designated for publications, the other for data preparation/ETL jobs (from inside the admin console).
This will ensure that the heavier ETL jobs can be throttled separately to the lighter publication jobs.

Setting the task engine’s peak/off-peak concurrent jobs will also provide the right balance between these two elements and
the real-time querying requirements of users. Note that the runtime servers are used during data modeling (ETL) design
sessions for generating previews. These processes can have a significant impact on the runtime server’s performance for other
tasks.

DS/ML and Solve
If there is a strong reliance on data science and machine learning, it should also be given its own resources and machines.
Both Python and R can be CPU and memory intensive depending on the size and complexity of the work.

The Solve Server is similar and should be treated as such.

16 Pyramid Scaling Guide © Pyramid Analytics 2025

Natural Language Processing (NLP)
The NLP component is far less CPU intensive, relatively light in terms of CPU processing time, but it requires a large memory
footprint (4-8GB). Multiple NLP servers can be created and load balanced, but it is very unlikely more than one instance would
be required, even for large deployments.

In-Memory
The bundled in-memory engine is designed to offer a simple alternative to other in-memory column-store database
technologies like Microsoft Tabular and SAP Hana. Since it houses customer data, which is idiosyncratic in design, size and
formulation, it is hard to provide specific guidance on servers hosting the in-memory engine.

However, as explained elsewhere, the in-memory server needs at least the requisite memory to host the analytic databases
(see the Appendix for some guidelines). Beyond that, its performance is heavily affected by the number of available CPUs. As
such, separating it from the other Pyramid tiers on its own server prevents it competing with other processing jobs. (Having
very large datasets or high concurrency running through the IMDB can potentially block the performance of the other
services.) Therefore, the In-memory engine must be allocated its own dedicated server and not be shared with other Pyramid
services.

Scaling Pulse
Pyramid Pulse is a standalone application server that is installed on a remote network, to allow Pyramid to connect and query
data stacks hosted on the remote network. Its performance is designed to be very “light” – which means the engine itself
does little work or processing. However, there are always limits.

When installing Pulse, customers can deploy a single instance on a single server which can then connect to multiple data
sources on the network. This is the most efficient model when there are no performance constraints. On the other extreme,
customers can elect to install multiple instances of Pulse on multiple remote servers . This then is the only scaling option for
Pulse, since each data source can only use one Pulse node, and Pulse nodes cannot be clustered.

17 Pyramid Scaling Guide © Pyramid Analytics 2025

Performance Bottlenecks

Slow real-time querying
If your users feel that the real-time query responses are slower than expected, first ensure that the runtime server is not
overwhelmed. The runtime server carries most of the weight. Usually, it is the first tier to be scaled up or out.

Follow that by a review of the data stack machine. Usually, if the runtime engine is not being taxed, performance is being
degraded by the query response times in the data stack. Transaction logs can highlight this issue.

Lastly ensure that the batch jobs running on the task engine are not competing with users for resources. The easiest
technique is to throttle the number of concurrent jobs the task engine can perform during user hours (“peak”).

Overwhelmed Data Stack
If the data stack is overwhelmed, it may be under resourced. Apart from increasing the resources or scaling it out, ensure that
the number of batch jobs submitted to the task engine are not overwhelming the engine – especially when users expect to
interact with the system during peak hours. The easiest way to mitigate this issue is to use the task throttling settings in the
admin console and selecting how many concurrent activities can run during peak and off-peak times.

Slow Content Management and Application
The entire application’s performance can be affected by the health and performance of the repository database. Ensure the
host server and database technology hosting the database is well resourced and that the database is fully tuned and
operating on fast disks.

Other Factors
Another element is the speed and performance of the authentication engines such as Active Directory4. These elements slow
all authentication processes, logins and database connections for queries. Related to this is the performance of networked
services like DNS, which can slow server connectivity and communications.

18 Pyramid Scaling Guide © Pyramid Analytics 2025

Appendix

Load Testing Design
The following basic ideas are useful in designing load tests on the runtime engine. Testing of the task engine is less relevant
since it is not designed for real-time responses and is throttled.

1. Login and content management: test the login in for users and use of the content tools. Do not include the login
exercise in every test, since a user does not login each time, they want to do a specific activity.

2. Query Performance: test opening a discovery report together with several follow up ad-hoc interactions on the report.
Repeat this for standard query sizes (100-500 cells); less for large queries (2000-10,000 cells); and seldom for
excessive queries (100,000+ cells).

3. Calculation Performance: test reports that include formulae (custom members) and lists (custom sets).
4. Concurrency Performance: test dashboards that include several standard queries and slicers.
5. Mix testing: use a mixture of the above tests, since real world users

19 Pyramid Scaling Guide © Pyramid Analytics 2025

Database Repository Considerations
Many deployments underestimate the size and performance needs of the repository database and its host server. There is a
need to ensure that this part of the cluster is extremely well resourced to prevent it becoming the bottleneck for the
application.

All three supported technologies – Microsoft SQL Server, PostgreSQL and Oracle – are designed to support large, high
performance data footprints and queries from thousands of concurrent requests. The strategies for scaling these out include a
scale up model (bigger machine: more memory, multiple disks, and more CPU’s) as well as a scale out model with clustering.

Deployment suggestions
• As a first step, Pyramid highly recommends installing the repository on its own server, so it does not compete with

the other tiers for resources.
• If the usage is expected to be very large (high user concurrency), then a clustering approach should be considered.
• If Pyramid is deployed to the cloud, using a database service may represent the easiest and most effective technique

for scaling out the repository database and its functions.
• Use very fast disks to house the database files. SSD’s can have a significant impact on performance. Memory and CPU

are less impactful.

Tactical Suggestions
• If all transactions are logged permanently and/or logs are stored for long periods of time, the log tables should be

moved to their own filegroups on different physical disks.
• If verbose logging is not used, turning off benchmark, transaction and audit logs can reduce the weight of database

activities not central to the product’s operation.
• Ensure that settings related to connection concurrency are maximized. (PostgreSQL defaults are generally too low).
• Run back-up operations off hours.

20 Pyramid Scaling Guide © Pyramid Analytics 2025

In-Memory Size Guidance
An exact sizing technique for sizing databases hosted in the In-memory engine is complex. In, general, Pyramid’s in-memory
databases are like those produced by other column-store technologies like Microsoft SSAS Tabular and SAP Hana. The guides
below are based on real-world examples and experience. But they could be quite different in each scenario.

• On disk the save database (in all these technologies) is compressed 7-10 times of the original relational data source
size. The amount of compression on disk is driven by 2 factors:

o Data types - integer’s vs decimals vs dates vs text/string. Each data type has its own byte length and size.
Integers are lowest through to strings which are heaviest. The heavier the data type, the more space it
requires.

o Cardinality - the number of unique values for a given column. If there is a high amount of repetition, the
compression is higher. If each value in a column is entirely unique, there will be far less compression.

• In memory the database expands its footprint. A rough guide is that it will occupy twice its compressed disk footprint.
So, the loaded database will be compressed 3-5 times of its original data source size in memory.

Using many sample databases, Pyramid has found that a rough rule of thumb is that a 10 million row fact table may take
2Gb of memory.

In-memory performance is affected by these resources:

• CPU: CPUs are used to crank query results, and because there is no “read” time like on-disk databases, the CPUs
are the main limiting factor in processing requests. The number of concurrent requests that can be handled,
therefore, is a simple function of the number of cores at the engine’s disposal.

• Memory Quality: Although this far less impact than the speed and number of CPUs, faster memory will obviously
load and process tasks quicker than older memory modules.

• Disk Speed: this has a very minor role for housing the saved databases. Load up speed and save speed however
are affected by disk speed. For very large systems, this can impact the build and load up time considerably.

21 Pyramid Scaling Guide © Pyramid Analytics 2025

Pyramid’s Baseline Load Testing Results
The following results are based on Pyramid’s internal baseline load tests.

Single Machine Tests:
• Hardware: 8x i7 CPU, 16Gb DDR3 Ram, 512Gb SSD Drive
• Software: The entire application is installed on a single machine, including PostgreSQL for the repository and the In-

memory engine

Dual Machine Tests:
• Hardware: Dual 8x i7 CPU, 16Gb DDR3 Ram, 512Gb SSD Drive
• Software: The entire application is installed on a single machine, including PostgreSQL for the repository and the In-

memory engine. Only the Runtime engine is installed on the second machine.

Common:
• External Factors: Separate Active Directory servers; Gigabit Corporate LAN
• Load Testing Software: Visual Studio 2015 Desktop
• Host OS: Windows 2016 Standard
• Basic Authentication used for websites with Active Directory

